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Abstract

Bayesian inference and decision theory may be used in the solution of relatively complex

problems of natural resource management, owing to recent advances in statistical theory

and computing. In particular, Markov chain Monte Carlo algorithms provide a computa-

tional framework for fitting models of adequate complexity and for evaluating the expected

consequences of alternative management actions. We illustrate these features using an ex-

ample based on management of waterfowl habitat.
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1 Introduction

Formal methods of decision making in natural resource management combine models of

the dynamics of an ecological system with an objective function, which values the outcomes

of alternative management actions. A common decision-making problem involves a temporal

sequence of decisions, each alike in kind, but where the optimal action at each decision point

may depend on time and/or system state (Possingham 1997). The goal of the manager,

then, is to develop a decision rule (or management strategy) that prescribes management

actions for each time or system state that are optimal with respect to the objective function.

Examples of this kind of decision problem include direct manipulation of plant or animal

populations through harvesting, stocking, or transplanting, as well as indirect population

management through chemical or physical manipulation of relevant habitat attributes. Of-

ten, these problems also have a spatial aspect, wherein management decisions are required

at different locations.

A rigorous analysis of such decision problems requires specification of (1) an objective

function for evaluating alternative management strategies; (2) predictive models of system

dynamics formulated in terms of quantities relevant to management objectives; (3) a finite

set of alternative management actions, including any constraints on their use; and (4) a

monitoring program to follow the system’s evolution and responses to management. The

objective function specifies the value of alternative management actions and usually accounts

for both benefits and costs, as well as conditional constraints. The predictive models must

be realistic enough to mimic the relevant behaviors of ecological systems, which often are

complex (i.e., include many interacting components), are characterized by spatial, temporal,

and organizational heterogeneity, and involve nonlinear dynamics. Thus, specification of an

objective function and of useful system models can often be a demanding and difficult task

in practical applications of decision theory to problems of natural resource management.

Perhaps even greater challenges are induced, however, by uncertainty in the predictions of
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management outcomes. This uncertainty may stem from incomplete control of management

actions, errors in measurement and sampling of ecological systems, environmental variability,

or incomplete knowledge of system behavior (Williams et al. 1996). A failure to recognize

and account for these sources of uncertainty can severely depress management performance

and, in some cases, has led to catastrophic environmental and economic losses (Ludwig et al.

1993). Accordingly, there has been a growing interest in the theory of stochastic decision

processes, and in practical methods for deriving optimal (or at least robust) solutions (Wal-

ters and Hilborn 1978, Hilborn 1987, Williams 1989). Recently, there has been a particular

emphasis on methods that can account for uncertainty in the dynamics of ecological systems

and in their responses to both controlled and uncontrolled factors (Walters 1986). This

uncertainty can be characterized by continuous or discrete distributions of model param-

eters (or by discrete distributions of alternative model forms), which are hypothesized or

estimated from historical data (e.g., see Walters 1975, Johnson et al. 1997). In this man-

ner, model uncertainty can be accommodated in solutions of decision problems in exactly

the same manner as environmental variation and incomplete management control (Walters

1975). An important conceptual advance, however, has been the recognition that these prob-

ability distributions are not static, but rather evolve over time as new observations of system

behaviors are accumulated during the management process (Walters 1986). The currently

popular notion of adaptive resource management involves efforts that attempt to account

for these dynamics of uncertainty in making management decisions (Walters 1986, Walters

and Holling 1990, Williams 1996).

In this paper we argue that Bayesian inference and decision theory provide a coherent,

theoretical framework for decision making in problems of natural resource management.

Bayesian inference includes a probabilistic approach for sequentially updating beliefs (spec-

ified in terms of model parameters) as new information is acquired through monitoring and

for predicting the consequences of future management actions, while properly accounting

for uncertainty in the updated beliefs. In Bayesian decision theory, management objec-
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tives are specified as a function of model predictions (and/or parameters), and the expected

consequences of any particular management action are calculated by integrating over the

uncertainty in both model parameters and predictions.

The potential applicability of Bayesian methods in problems of natural resource man-

agement or conservation has been recognized previously (Ellison 1996, Bergerud and Reed

1998, Wade 2000); however, only recently have advances in statistical theory and computing

allowed fairly complex, and hopefully more realistic, models to be fitted and used in deci-

sion making. Markov chain Monte Carlo algorithms (Gelfand and Smith 1990, Smith and

Roberts 1993, Gilks et al. 1996), for example, are currently used in Bayesian analyses to fit

complex models that were considered intractable only a decade ago.

In this paper we illustrate the Bayesian approach to inference and decision-making using

an example based on management of waterfowl habitat. This example is motivated by a

problem in southeast Florida where water levels and vegetation are managed to provide

habitat for overwintering waterfowl. For purposes of illustration our example has been

greatly simplified. It nonetheless includes several features that are common in problems

of natural resource management. Our objective is to illustrate the general utility of the

Bayesian approach in these problems, taking advantage of modern technological advances in

Bayesian computation.

2 Inference and Decision-Making in a Problem of Habi-

tat Management

2.1 Background and Setting

Suppose a moderately large property (say, on the order of a few thousand acres) is man-

aged to provide habitat for waterfowl that may only be present during a brief overwintering

period. (Migratory ducks that originate and live primarily in northeastern North America
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but migrate to Florida for the winter are good examples.) The wildlife managers respon-

sible for this property believe that a combination of emergent vegetation interspersed with

about 50% open water provides nearly ideal habitat for these waterfowl. Managers can reg-

ulate water levels on the property with reasonably good precision (owing to the presence

of impoundments); however, there is considerable uncertainty about how to control growth

of vegetation to provide suitable habitat. Various types of physical manipulation, such as

burning, cutting, or grazing of vegetation, represent possible management actions for con-

trolling growth; however, the effects of these manipulations are not well understood and are

difficult to predict. Nonetheless, wildlife managers must develop a strategy that combines

water-level regulation with one or more types of physical manipulation of the vegetation to

achieve their objective of 50% open water and 50% vegetation cover.

Assume that the property to be managed is subdivided into n non-overlapping plots

of approximately equal size and shape that can be manipulated in various ways to alter

vegetation cover. Let x denote a q × 1 design vector that specifies which of the q possible

management actions (i.e., manipulations) is applied to an individual plot. Without loss

of generality, we define x using a “centered” parameterization wherein x = (1, 0, . . . , 0)T

specifies the first management action, x = (0, 1, . . . , 0)T specifies the second management

action, and so on. The exponent, T , indicates the transpose of a matrix or vector.

In the first year of management suppose we have a procedure (e.g., randomization) for

deciding which of the q possible management actions is applied to each of the n plots. In

other words, we have a way of assigning a value to xi1, the design vector for the ith plot

(i = 1, . . . , n) at time t = 1. For the moment, we assume that each management action can be

applied without error (i.e., uncertainty due to partial controllability of management actions

is negligible). Our initial management actions may be summarized in a n × q matrix X1 =

(x11,x21, . . . ,xn1)T . Suppose we have implemented these actions and observed the vegetation

cover in each plot. Denoting these n responses in vegetation cover with an n × 1 vector y1

(subscript indicates t = 1), we summarize the results of the first year of management actions

4



as follows:

Plot ManagementAction VegetationCover

1 x11 = (1, 0)T ⇒ burning y11

2 x21 = (1, 0)T ⇒ burning y21

3 x31 = (0, 1)T ⇒ cutting y31

...
...

...

n xn1 = (0, 1)T ⇒ cutting yn1

(Only q = 2 management actions are illustrated for ease of presentation.)

Given these results, we now require a procedure for selecting a new set of management

actions to be implemented in the second year. Our selection should depend on the plot-

specific responses of vegetation to management actions applied in the previous year and

on the need to satisfy the overall management objective of 50% vegetation cover. In other

words, we need a procedure that specifies X2, the design at t = 2, given our management

objective and our current beliefs.

2.2 Modeling Consequences of Management Actions

Statistical models provide an essential framework for specifying our beliefs and for making

evidentiary conclusions or predictions based on those beliefs and on the available data. In

our habitat-management problem, a statistical model is needed to provide a quantitative,

unambiguous description of the processes thought to be responsible for producing plot-

specific differences in vegetation cover. The model allows us to infer which processes are

most important in terms of well-defined criteria (i.e., model parameters) and to predict the

consequences of future management actions given our current level of understanding and

current estimates of uncertainty.

We consider the following, relatively simple model of plot-specific vegetation responses

over a period of τ years. Assume the vegetation cover in an individual plot depends on both
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the current type of management and on past levels of vegetation observed in that plot. We

can specify these dependencies using a first-order, autoregressive model:



Yi1

Yi2

Yi3

...

Yiτ




∼ N
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xT
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xT
i3β

...

xT
iτβ




,
σ2

(1 − ρ2)




1 ρ ρ2 · · · ρτ−1

ρ 1 ρ

ρ2 ρ 1
... . . .

ρτ−1 1







(1)

where Yit is a random variable for vegetation cover in plot i in year t, xit specifies the

management action applied to plot i in year t, and β, σ2, and ρ are model parameters. Given

the “centered” parameterization implied in our definition of x, each element of β corresponds

to the mean vegetation cover associated with a distinct management action. The parameter

ρ denotes the correlation between vegetation responses observed in consecutive years.

For our purposes, it is useful to express the plot-specific temporal dependence in vegeta-

tion cover in the following form, which is equivalent to (1):

(Yit | xit,β, σ2, ρ, yi,t−1, xi,t−1) ∼




N(xT
itβ, σ2/(1 − ρ2)) if t = 1,

N
(
xT

itβ + ρ (yi,t−1 − xT
i,t−1β), σ2

)
if t > 1.

(2)

Thus, by conditioning on the sequence of past observations (yi1, . . . , yi,t−1), we express the

conditional mean of the ith plot’s vegetation cover in year t (> 1) in terms of present and

past management actions (xit and xi,t−1, respectively). This form of conditioning induces a

temporal dynamic that has important implications for the adaptive selection of plot-specific

management actions and will be discussed more fully in Section 2.4.

So far we have considered only how vegetation cover might respond to changes in manage-

ment actions within a single plot. All plots on the property are monitored and manipulated

in an adaptive approach to management; therefore, we require a model of the vegetation

responses in all plots. The simplest assumption to consider is that plot-specific responses
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are conditionally independent; thus, their joint density is

f(yt | X t,θ, yt−1,X t−1) =
n∏

i=1

f(yit | xit,θ, yi,t−1,xi,t−1), (3)

where f(yit | xit,θ, yi,t−1,xi,t−1) specifies the conditional distribution (in (2)) of vegetation

cover in the ith plot and θ = (β, ρ, σ2)T is a vector of model parameters. The right-hand-side

of (3) would be more complicated if we had assumed that vegetation cover depended, in part,

on the proximity of one plot to another. For now, however, we ignore spatial dependence in

vegetation cover (but see Section 3).

2.3 Bayesian Updating of Model Parameters

Armed with a model of the responses in vegetation to different types of physical manip-

ulation, we now describe how Bayesian inference may be used to update our beliefs about

model parameters as new management actions are implemented over time. At the end of

the first year, we have implemented a set of management actions (X1) and observed the

responses of vegetation cover to those management actions (y1). Applying Bayes Theorem

yields the posterior distribution of model parameters,

p(β, σ2, ρ | y1,X1) =
f(y1 | X1,β, σ2, ρ) π(β, σ2, ρ)∫

f(y1 | X1,θ) π(θ) dθ
, (4)

which indicates how our initial opinion of the model parameters (specified in the prior distri-

bution π(β, σ2, ρ)) is modified in light of the observed responses of vegetation to management.

The contribution of these data to the posterior is called the likelihood function, which we

denote by f . Since one year of data provides no information about the temporal dependence

of vegetation cover within each plot, information about ρ in the posterior for t = 1 will be

identical to that specified in the prior π(β, σ2, ρ). Our opinions about β and σ2, on the other

hand, are likely to be influenced by the first year’s results.

Now imagine that we have selected and implemented a set of management actions in

the second year (X2) and observed the responses in vegetation cover (y2). Again, applying
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Bayes Theorem yields the posterior distribution of model parameters

p(β, σ2, ρ | y1,y2,X1,X2) =
f(y2 | X2,β, σ2, ρ, y1,X1) p(β, σ2, ρ | y1,X1)∫

f(y2 | X2,θ, y1,X1) p(θ | y1,X1) dθ
, (5)

which reveals how our opinion of the model parameters at the end of the first year is modified

by the results observed in the second year. In particular, ρ may now be updated based on

the second year of responses in vegetation cover.

Using successive applications of Bayes Theorem, it is easy to show that the posterior

distribution of model parameters at the end of the tth year is

p(θ | y1, . . . ,yt,X1, . . . ,X t) =

f(yt | X t,θ, yt−1,X t−1) p(θ | y1, . . . ,yt−1,X1, . . . ,X t−1)∫
f(yt | X t,ψ, yt−1,X t−1) p(ψ | y1, . . . ,yt−1,X1, . . . ,X t−1) dψ

, (6)

where ψ represents all possible values of the model parameters. Thus, Bayes Theorem pro-

vides a general method for sequentially updating our beliefs and quantifying our uncertainty

about model parameters as new results are acquired. In Section 2.4 we describe how Bayesian

updating is used to evaluate the consequences of future management actions and thereby

help to achieve the overall management objective of 50% vegetation cover.

2.4 Computing an Optimal Set of Management Actions

Our overall management objective (50% vegetation cover) is defined in terms of quantities

that are directly observable, unlike the unobservable model parameters. To evaluate the con-

sequences of future management actions, we therefore require predictions of the (observable)

vegetation cover in each plot, given what we have learned from past observations.

Let ỹt denote an n × 1 vector of plot-specific predictions of vegetation cover in year t.

The posterior predictive distribution of ỹt

p(ỹt | X̃ t, y1, . . . ,yt−1,X1, . . . ,X t−1) = (7)∫
f(ỹt | X̃ t,θ, yt−1,X t−1) p(θ | y1, . . . ,yt−1,X1, . . . ,X t−1) dθ
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specifies our uncertainty in predictions of vegetation cover in year t, given a proposed set

of management actions (X̃ t) and the sequence of vegetation covers (y1, . . . ,yt−1) observed

after implementation of management actions (X1, . . . ,X t−1) in years 1 through t − 1. The

posterior predictive distribution properly accounts for all sources of uncertainty specified

in the model because it integrates the conditional likelihood of plot-specific predictions of

vegetation cover over the posterior uncertainty of all model parameters.

We now describe how (7) is used to select future management actions that maximize our

opportunity to achieve the overall management objective of 50% vegetation cover. We denote

these management actions as “optimal.” Assume that a set of plot-specific management

actions X1 has been implemented and that the vegetation responses to those actions y1

have been observed. We require a procedure for selecting an optimal set of management

actions to be implemented in year 2. Let l(ỹ2, c) denote a function that specifies the scalar-

valued loss incurred when our predictions of vegetation cover differ from the target value

(c = 50%). For example, l(ỹ2, c) =
∑n

i=1 |ỹi2 − c| is an absolute-error loss function, which

equals the sum of the absolute discrepancies between plot-specific predictions of vegetation

cover and the target value.

The loss function l(ỹ2, c) allows us to develop an unambiguous, mathematical description

of our overall management objective. Specifically, we seek a (future) management action X̃2

that minimizes the loss that can be expected given the posterior uncertainty in plot-specific

predictions of vegetation cover. We denote this expected loss by

l(X̃2 | y1,X1) = E
(ỹ2|X̃2,y1,X1)

[l(ỹ2, c)] (8)

=
∫

l(ỹ2, c) p(ỹ2 | X̃2,y1,X1) dỹ2,

which reveals the crucial role of the posterior predictive distribution p(ỹ2 | X̃2,y1,X1) in

this problem. Our overall management objective may now be stated succinctly: Find an

optimal set of future management actions X̃
∗
2 such that

X̃
∗
2 = arg min

X̃2

[
l(X̃2 | y1,X1)

]
. (9)
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In other words, X̃
∗
2 is the set of future management actions that minimizes the expected loss

defined in (8).

The computations involved in solving (9) may be formidable; however, in principle a

solution can always be found, assuming that one exists (see Section 2.5.1 for an example

where no optimum exists). We have assumed that one of q management actions can be

implemented in each of the n plots; therefore, there are qn possible values of X̃2 to compare

in the search for an optimal set of management actions X̃
∗
2.

Although we cannot seriously expect our model assumptions to remain valid indefinitely

long, we can also compute an optimal sequence of future management actions. Suppose we

have observed X1 and y1 and want to predict an optimal sequence of future management

actions (X̃
∗
2, X̃

∗
3, . . . , X̃

∗
τ ) to be implemented in the next τ − 1 years. Let l(ỹ2, . . . , ỹτ , c)

denote a scalar-valued loss function that specifies the loss incurred when future predictions

of vegetation cover fail to meet the objective of c = 50%. As in (8), we define the expected

loss through year τ as follows:

l(X̃2, . . . , X̃τ | y1,X1) = E
(ỹ2,...,ỹτ |X̃2,...,X̃τ ,y1,X1)

[l(ỹ2, . . . , ỹτ , c)] (10)

=
∫

l(ỹ2, . . . , ỹτ , c) p(ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1) dỹ

where ỹ = (ỹ2, . . . , ỹτ )T . The solution to our problem is the sequence of future management

actions (X̃2, . . . , X̃τ ) that minimizes (10). Although numerical evaluations of (10) will be

computationally expensive, they are feasible. For example, our model implies that a random

draw from the posterior predictive distribution (ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1) can be

obtained by computing random draws from an appropriately ordered sequence of conditional

posterior predictive distributions since

p(ỹ2, . . . , ỹτ | X̃2, . . . , X̃τ , y1,X1) = p(ỹ2 | X̃2,y1,X1) p(ỹ3 | ỹ2, X̃2, X̃3,y1,X1)

· · · p(ỹτ | ỹ2, . . . , ỹτ−1, X̃2, . . . , X̃τ ,y1,X1). (11)
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2.5 Numerical Examples

In this section 3 hypothetical data sets are used to clarify by example how data may

be used to inform management decisions. The data are analyzed using the autoregressive

model developed in Section 2.2, and decisions are made using the framework described in

Sections 2.3 and 2.4. Computational details about sampling from posterior and posterior-

predictive distributions are described in Appendix A. All computations were completed

using the WinBUGS computing software (Gilks et al. 1994), which is freely available from

the World Wide Web (http://www.mrc-bsu.cam.ac.uk/bugs). Appendix B contains our

annotated code written for WinBUGS.

2.5.1 Equivocal responses in vegetation cover

In the first year of management suppose one of two types of management actions (denoted

by X1 = 1 and X1 = 2) are randomly assigned to each of 4 plots. After doing so, we observe

the vegetation cover (y1, as a proportion) in each plot as follows:

Plot X1 y1

1 1 0.15

2 2 0.55

3 2 0.85

4 1 0.45

The sample mean vegetation covers associated with management actions 1 and 2 (0.30 and

0.70, respectively) are equidistant from c = 0.50, the level of vegetation cover specified as

our management objective. What plot-specific management actions X̃2 should be taken in

year 2, given the vegetation responses observed year 1?

First we specify the management objective by assuming an absolute-error loss function,

l(ỹ2, 0.50) =
∑

i |ỹi2 − 0.50|, which quantifies the total discrepancy between predicted plot-

specific vegetation cover and c = 0.50. The optimal set of management actions includes
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those which minimize the expected loss, averaging over the posterior uncertainty in plot-

specific predictions of vegetation cover (as in (8)). In this case there are 16 (= 24) possible

combinations of management actions to be compared (indicated in the columns below):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2

1 1 1 1 2 1 2 2 1 2 2 1 2 2 1 2

To complete a Bayesian analysis of the data from year 1, we assume mutually inde-

pendent, Uniform(0,1) prior distributions for each component of β (the treatment-effect

parameters), a conjugate Inverse-Gamma(0.1,0.1) prior for σ2, and a Uniform(-1,1) prior

for ρ (the parameter for temporal dependence within plots). These distributions specify

no strong prior opinions about the values of the model’s parameters. Given the vegetation

responses observed in year 1, we compute that the posterior means of β1 and β2 are 0.37

and 0.63, respectively, which reflects a Bayesian compromise (sometimes called “shrinkage”)

between the prior means (0.50 and 0.50) and the sample means (0.30 and 0.70). Since each of

the posterior mean vegetation responses is equidistant from the target c = 0.50, it is perhaps

not surprising that none of the 16 possible sets of management actions is favored over an-

other. In fact, each of the 16 management actions has an approximately equal expected loss

of 1.59 (Monte Carlo standard error = 0.006). Therefore, the data suggest that any set of

management actions proposed for year 2 is as good as any other (relative to the management

objective, that is), and the new set of management actions may even be selected randomly

and still be optimal.

2.5.2 Favored responses in vegetation cover

This example is identical to the previous one except that we observe a different set of

vegetation responses at the end of the first year:
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Plot X1 y1

1 1 0.15

2 2 0.55

3 2 0.65

4 1 0.25

Intuitively, one might guess that management action 2 is favored for selection in year 2

because the sample mean vegetation response to action 2 (0.60) is closer to the management

objective of c = 0.50 than the mean vegetation response to management action 1 (0.20).

This, in fact, turns out to be correct. If we use the same set of priors as in the previous

example, the expected losses of the 16 sets of management actions are

1 2 3 4 5 6 7 8

1.55 1.51 1.51 1.47 1.50 1.51 1.47 1.47

9 10 11 12 13 14 15 16

1.47 1.43 1.46 1.47 1.43 1.43 1.42 1.39

All 4 plots receive management action 2 under the optimal set of management actions (#16).

2.5.3 Equivocal and correlated responses in vegetation cover

In Section 2.5.1 the equivocal vegetation responses assumed to have been observed in

year 1 fail to favor selection of any of the 16 possible management actions. Based on this

analysis, suppose we decide in year 2 to use the same set of actions used in year 1 and then

observe the following additional year of vegetation responses:

Plot X1 y1 X2 y2

1 1 0.15 1 0.25

2 2 0.55 2 0.50

3 2 0.85 2 0.75

4 1 0.45 1 0.50
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Notice that the sample mean vegetation covers associated with management actions 1

and 2 (0.3375 and 0.6625, respectively) are still equidistant from our management objective

of c = 0.50. However, there is now enough information to update our prior beliefs about

the interannual dependence in plot-specific vegetation responses, and we may examine the

influence of serial correlation (parameterized by ρ) on the selection of management actions

in year 3.

Adopting the same set of priors used earlier, a Bayesian analysis of the observed vege-

tation responses yields posterior means of β1 and β2 that approximately equal the sample

means (0.35 and 0.65, respectively (Figure 1)). The posterior distribution of ρ (Figure 1)

is highly skewed (mean = 0.37, median = 0.42) and indicates that the vegetation responses

within each plot are positively correlated. Expected losses for comparing the different sets

of management actions proposed for year 3 are quite different:

1 2 3 4 5 6 7 8

1.07 1.00 1.07 1.00 1.15 1.07 1.15 1.07

9 10 11 12 13 14 15 16

1.00 1.08 1.15 1.07 1.14 1.07 1.00 1.07

In particular, there are 4 sets of management actions (#2, #4, #9, #15) that have smaller

expected losses (1.00, average Monte Carlo SE = 0.002) than the other sets of management

actions. Therefore, by estimating the temporal dependence in vegetation responses, we

reduce the number of alternative sets of actions that are likely to achieve the management

objective from 16 to 4. Further reductions, say to an optimal set of actions, are likely as the

information about plot-specific vegetation responses to management accumulates.

3 Discussion

Management of natural resources generally involves a repeating sequence of data collec-

tion (monitoring), assessment (analysis of data and prediction of consequences of proposed
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management actions), and implementation (actions or manipulations intended to achieve

management objectives). This sequence essentially represents an iterative updating of be-

liefs that includes learning from data and making decisions in the presence of uncertainty,

activities which are inherent features of the Bayesian paradigm.

We have demonstrated that Bayesian inference and decision theory may be used in the

solution of relatively complex problems of natural resource management, owing to recent

advances in statistical computing. Our hypothetical problem of habitat management (Sec-

tion 2), though greatly simplified, includes several features that are common in actual prob-

lems of natural resource management. For example, we assumed that changes in system state

(plot-specific vegetation) depend on proposed and past management actions and on the past

state of the system. State-dependent dynamics are often justified on scientific (problem-

specific) grounds; however, they are sensible also in cases where the proximate causes of

state dependence are poorly understood (and unobserved) but necessary for accurate pre-

dictions of future system state.

Actual problems of natural resource management often contain additional features that

add complexity to models of system dynamics or to the loss functions used in specifying

management objectives. Modern Bayesian methods of inference and decision-making are

capable of accommodating many, if not all, of these additional complexities. For example,

system dynamics frequently are influenced by factors that cannot be controlled by managers.

Uncertainties in system responses to management actions may be induced by environmental

variability or by errors in sampling, measurement, or application of management actions.

Alternatively, the sources of uncertainty may be difficult to identify and yet produce con-

spicuous patterns of variation in system responses (e.g., spatial correlations). A proper

accounting of these additional sources of uncertainty requires modeling; however, if models

are to be useful and relevant in decision-making, the models must include parameters that

can be updated as new information is acquired through monitoring. The Bayesian paradigm

provides a coherent framework for updating any of the parameters in a model of system dy-
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namics, including ancillary parameters that do not represent the direct effects of management

actions on system responses. In addition, there are virtually no limits to the complexity of

models that can be entertained. Technological advancements in Bayesian computation cur-

rently permit sophisticated, hierarchical models of spatial and temporal dependence to be

fitted with relative ease (Wikle et al. 1998, Datta et al. 2000).

In some problems of natural resource management, scientific reasoning may indicate

that 2 or more structurally distinct models of system dynamics could be fitted to the data

and used in decision making. In other problems the process of model selection may be

somewhat arbitrary, and several models may fit the data equally well and provide plausible

descriptions of the observations. In either case, it would seem more appropriate to predict

the consequences of management actions by integrating over the posterior uncertainty of

all models under consideration rather than by conditioning on the predictions of a single

model. The Bayesian paradigm provides a straightforward method for averaging over model

uncertainty (Draper 1995, Hoeting et al. 1999) that follows naturally from the calculus of

probabilities and requires no additional theory or principles. Thus, it is entirely feasible to

incorporate model uncertainty into the selection of alternative management actions.

In many problems of natural resource management, objectives are specified in terms of

the cumulative losses and benefits obtained from a future sequence of management actions.

The accumulated harvest of exploited fish or wildlife populations over some period of time is

a good example. In such problems the expected loss used to evaluate alternative sequences

of management actions generally depends on the joint distribution of predicted system re-

sponses (as in (10) for example). Although evaluation of such loss functions for an individual

sequence of management actions poses no real difficulty in the Bayesian decision-making

framework, no algorithms currently exist for efficiently locating the particular sequence of

management actions that minimizes the cumulative loss. An exhaustive comparison of the

losses among all possible sequences of management actions is required. Such comparisons

quickly become computationally infeasible as the number of alternative management actions
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and the number of times in which those actions are applied increase. The backward-induction

algorithm used in stochastic dynamic programming (Puterman 1994, p. 92–93) provides a

solution to these computational difficulties but only for restricted classes of problems where

the system and its dynamics are discretized and modeled as a Markov process. Even in these

problems the practical application of stochastic dynamic programming is computationally

limited by the number of state and control variables (Williams 1989). This limitation is espe-

cially evident when the posterior uncertainty in model parameters is specified using a finite

number of discrete parameter values and associated model weights that must be included as

additional state variables (Williams 1996, Johnson and Williams 1999). In these cases it is

difficult to ensure that the posterior uncertainty in model parameters is adequately specified

using a few, discrete alternatives, and considerable ambiguity exists in the methods that

have been used to update model weights as new data are acquired (Walters 1986, Williams

et al. 1996, Johnson et al. 2002). In contrast, Bayesian inference provides a coherent method

for the posterior updating of all model parameters, as described earlier.

Complicated loss functions also occur in problems where a sequence of decisions is re-

quired but the relative effects of different management actions are poorly understood. In

these problems managers initially may place greater value on learning about the magnitude

of these effects than on achieving a particular management objective (e.g., a target level of

vegetation cover). The rationale here is that learning may yield long-term benefits which

exceed the short-term rewards that may be attained without an improved understanding of

the effects of alternative management actions. Walters and Hilborn (1978) refer to these

as dual-control problems that require “active adaptive” management. The competing ob-

jectives of dual-control problems must be specified in the loss function, which quantifies

the benefits of learning from a proposed set of management actions. In a Bayesian treat-

ment of the problem these benefits may be formulated in terms of the average discrepancy

between the posterior distribution of model parameters and updates of the posterior that

are predicted from the distribution of outcomes associated with a proposed set of manage-
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ment actions. Therefore, in dual-control problems loss functions will generally include model

parameters (to quantify learning) and model predictions of observable system features (to

quantify specific management objectives).

In this paper we have argued that modern methods of Bayesian inference and decision

making are capable of solving complex problems of natural resource management. We antic-

ipate widespread use of these methods in the near future, particularly as computing software

is developed for estimating posterior distributions of model parameters and predictions (e.g.,

see the software guide in Appendix C of Carlin and Louis 2000).
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A Stochastic Sampling Algorithms for Bayesian Com-

putation

We use a Markov chain Monte Carlo algorithm called Gibbs sampling (Gelfand and

Smith 1990, Gilks et al. 1996) to draw samples from joint posterior distributions of model

parameters. The Gibbs sampler is well suited to the model described in Section 2.2 because

conditional posterior distributions of its parameters are relatively easy to sample. For ex-

ample, when inferences are based on only 1 year of data (as in Sections 2.5.1 and 2.5.2), the

joint posterior density is formed by taking the product of the likelihood function

f(y1 | X1,β, τ, ρ) =
(

τ(1 − ρ2)
2π

)n/2

exp
[
−τd1(1 − ρ2)

2

]
, (12)

where τ = 1/σ2 and d1 =
∑n

i=1(yi1−xT
i1β)2, and the prior. Assuming mutually independent,

Uniform(0,1) priors for each component of β, a Uniform(-1,1) prior for ρ, and a conjugate

Gamma(ε1, ε2) prior for τ , the prior density function of model parameters is

π(β, τ, ρ) =
(

1
1 − 0

)2 (
1

1 + 1

)
εε1
2

Γ(ε1)
τ ε1−1 exp(−τε2). (13)

Forming the product of (12) and (13) and excluding terms without parameters yields the

joint posterior density (modulo the normalizing constant)

p(β, τ, ρ | y1,X1) ∝ τn/2+ε1−1(1 − ρ2)n/2 exp
[
−τ

(
ε2 +

d1(1 − ρ2)
2

)]
. (14)

Random draws of β, τ , and ρ are difficult to compute by sampling (14) directly. Gibbs

sampling provides a sample from (14) by computing random draws from each parameter’s full

conditional posterior distribution, which holds the values of other parameters constant. By

alternating among the parameters, the Gibbs sampler yields a stochastic sequence (actually

a Markov chain) whose stationary distribution is the joint posterior; thus, a sample from the

stationary Markov chain is also a sample from (14).

The conditional posterior densities needed for Gibbs sampling are readily derived from

the joint posterior density. For example, ignoring terms in (14) that don’t include τ yields

22



the full conditional density for τ (modulo its normalizing constant)

p(τ | β, ρ,y1,X1) ∝ τn/2+ε1−1 exp
[
−τ

(
ε2 +

d1(1 − ρ2)
2

)]
. (15)

This function is proportional to the density function of a Gamma distribution, so random

draws from (15) are relatively easy to compute as follows:

τ | β, ρ,y1,X1 ∼ Gamma
(

ε1 + n/2, ε2 +
d1(1 − ρ2)

2

)
.

The full conditional densities of β and ρ are derived from (14) in the same way as that of τ :

p(βj | βk( �=j), τ, ρ,y1,X1) ∝ exp
[
−τd1(1 − ρ2)

2

]
(16)

p(ρ | β, τ,y1,X1) ∝ (1 − ρ2)n/2 exp
[
−τd1(1 − ρ2)

2

]
. (17)

These conditional densities do not have a familiar form, but still may be sampled using

adaptive-rejection sampling (Gilks 1992, Gilks and Wild 1992) or other algorithms for com-

puting random draws from univariate densities (Carlin and Louis 2000, p. 131–137).

When inferences are based on 2 years of data (as in Section 2.5.3), we form the joint

posterior density as before and obtain

p(β, τ, ρ | y1,y2,X1,X2) ∝ τn+ε1−1(1 − ρ2)n/2 exp
[

− τ
(
ε2 +

d1(1 − ρ2)
2

+
d2

2

)]
, (18)

where d2 =
∑n

i=1(yi2 − xT
i2β − ρ(yi1 − xT

i1β))2. Gibbs sampling may be used to sample (18)

by computing random draws from the following full-conditional distributions (modulo their

normalizing constants):

p(τ | β, ρ,y1,y2,X1,X2) ∝ τn+ε1−1 exp
[

− τ
(
ε2 +

d1(1 − ρ2)
2

+
d2

2

)]
, (19)

p(βj | βk( �=j), | τ, ρ,y1,y2,X1,X2) ∝ exp
[

− τ
(d1(1 − ρ2)

2
+

d2

2

)]
, (20)

p(ρ | β, τ,y1,y2,X1,X2) ∝ (1 − ρ2)n/2 exp
[

− τ
(d1(1 − ρ2)

2
+

d2

2

)]
. (21)
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Given a sample from the joint posterior distribution of model parameters, the method

of composition (Tanner 1996) may be used to compute a sample from the posterior predic-

tive distribution (7) associated with a particular set of management actions; then, Monte

Carlo integration may be used to estimate the expected loss (8) associated with this set of

management actions. We demonstrate these calculations, which are rather trivial for the

autoregressive model, using the example in Section 2.5.3. Suppose Gibbs sampling has been

used to compute an arbitrarily large sample from the joint posterior distribution (5), and

let θ(r) = (β(r), σ2(r), ρ(r)) denote the rth element in this sample. We require a sample of

the posterior predictive distribution of vegetation responses (ỹ3 | X̃3,y1,y2,X1,X2) asso-

ciated with the proposed management actions specified in X̃3. By applying the method of

composition to (7), the rth element ỹ(r)
3 is easily obtained by computing a random draw

from the following, n-variate normal distribution: N(X̃3β
(r) + ρ(r)(y2 − X2β

(r)), σ2(r)I),

where I is the n×n identity matrix. The absolute-error loss function used in the example of

Section 2.5.3 is l(ỹ3, 0.5) =
∑n

i=1 |ỹi3 − 0.5|. To estimate the expected loss associated with

the proposed management actions X̃3, we use Monte Carlo integration to average over the

posterior uncertainty expressed in the predictions of ỹ3:

l(X̃3 | y1,y2,X1,X2)
.=

1
R

R∑
r=1

l(ỹ(r)
3 , 0.5)

where R denotes the number of draws computed from the posterior predictive distribution

of ỹ3.
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B WinBugs Code for Numerical Examples

# Autoregressive model of 1 year of data

model {
SigmaInv < − tau*(1.-rho*rho)

for (i in 1:n) {
# Specify model of plot-specific vegetation responses

y[i] ∼ dnorm(beta[x[i]], SigmaInv)

# For each design, specify model of predictions and compute

# plot-specific losses given those predictions

for (j in 1:ndesigns) {
mu[i,j] < − beta[xp[i,j]] + rho*(y[i]-beta[x[i]])

yp[i,j] ∼ dnorm(mu[i,j], tau)

loss[i,j] < − abs(yp[i,j] - ytarget)

}
}
# Sum plot-specific losses to compute total loss associated with each design

for (j in 1:ndesigns) {
totalLoss[j] < − sum(loss[,j])

}
# Specify prior distributions of model parameters

beta[1] ∼ dunif(0,1)

beta[2] ∼ dunif(0,1)

tau ∼ dgamma(0.1,0.1)

rho ∼ dunif(-1,1)

}

# Assign 1 year of data and 16 possible sets of management actions

list(n=4, ndesigns=16, ytarget=0.5)

25



list(y=c(0.15, 0.55, 0.85, 0.45), x=c(1,2,2,1))

list(xp = structure(.Data=c(

1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,

1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2,

1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2,

1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2 ),

.Dim=c(4,16)) )

# Initialize parameter values to begin stochastic simulation

list(beta=c(.25,.75), tau=25.0, rho=0.0)

# Autoregressive model of 2 years of data

model {
SigmaInv < − tau*(1.-rho*rho)

for (i in 1:n) {
# Specify model of plot-specific vegetation responses

y1[i] ∼ dnorm(beta[x1[i]], SigmaInv)

mu2[i] < − beta[x2[i]] + rho*(y1[i]-beta[x1[i]])

y2[i] ∼ dnorm(mu2[i], tau)

# For each design, specify model of predictions and compute

# plot-specific losses given those predictions

for (j in 1:ndesigns) {
mu[i,j] < − beta[xp[i,j]] + rho*(y2[i]-beta[x2[i]])

yp[i,j] ∼ dnorm(mu[i,j], tau)

loss[i,j] < − abs(yp[i,j] - ytarget)

}
}
# Sum plot-specific losses to compute total loss associated with each design

for (j in 1:ndesigns) {
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totalLoss[j] < − sum(loss[,j])

}
# Specify prior distributions of model parameters

beta[1] ∼ dunif(0,1)

beta[2] ∼ dunif(0,1)

tau ∼ dgamma(0.1,0.1)

rho ∼ dunif(-1,1)

}

# Assign 2 years of data and 16 possible sets of management actions

list(n=4, ndesigns=16, ytarget=0.5)

list(y1=c(0.15, 0.55, 0.85, 0.45), x1=c(1,2,2,1))

list(y2=c(0.25, 0.50, 0.75, 0.50), x2=c(1,2,2,1))

list(xp = structure(.Data=c(

1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,

1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2,

1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2,

1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2 ),

.Dim=c(4,16)) )

# Initialize parameter values to begin stochastic simulation

list(beta=c(.25,.75), tau=25.0, rho=0.0)
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Figure 1: Histogram of the posterior distributions of β1, β2, and ρ estimated from the 2 years
of vegetation responses given in Section 2.5.3.
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